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ABSTRACT

One of the challenges in developing an intelligent tutoring system (ITS) 1is
the understanding and representation of expert performance. This representa-
tion is required to evaluate student performance and support remediation and
coaching of the student. The traditional approach to gaining this understand-

ing is through a top-down process of knowledge engineering. In this process,
a knowledge engineer observes expert performance, conducts a task analysis,
and interviews one or more subject matter experts. However, this process 1is

lengthy and error prone, especially for complex tasks.

A significant cost and time mitigation step for the KE process is to create a
virtual environment to support the observation of SMEs performing the task.
An added benefit is the generation of detailed digital data representing a
wide range of output relative to the performance of the task at hand. The
Virtual Environment for Training Technologies (VETT) immersive training simu-
lation has been developed by NAWC-TSD, and has initially been used to support
the conning officer shiphandling task of underway replenishment (UNREP).
Utilizing students from the Surface Warfare Officer School Command
(SWOSCOLCOM) , a database of UNREP performance has been developed.

Using traditional data mining techniques, it is possible to develop an under-
standing of system (that is, student conning a ship) performance from the data
generated in the training environment. Data mining is the process of discov-
ering relationships within the data. Depending on the approach, the data min-
ing process itself can result in the creation of a software model of the sys-
tem. By using a fuzzy logic-based approach, this process also results in a
semantic representation of that performance. An additional advantage of a
fuzzy logic approach is that the semantic representation can be reviewed by
the knowledge engineer and the SME, and easily understood, edited, and re-
tested. This allows for better understanding of system dynamics, as well as a
much quicker review, test, and validation process.

Unlike black box approaches to data mining such as neural nets, the fuzzy ex-
pert model is eminently traceable. Not only does it report a degree of match
between observed and trained performance, it allows for traceability of system
operation. Implemented within an intelligent tutoring system, this allows for
the remediation process to not only measure the degree to which the student
deviates from expected behavior, but also to know in what specific area that
deviation occurs.
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BACKGROUND

The US Navy Naval Air Warfare Cen-
ter, the Training Systems Division
(NAWC-TSD), has developed a Virtual
Environment for Training Teams
(VETT) to investigate the wuse of
virtual software environments in
training. In the initial demonstra-
tion, an underway replenishment
(UNREP) task, a conning officer
drives a warship alongside a replen-
ishment ship while at sea to take on
fuel and stores (Crenshaw, 1975).
Part of the investigation includes
developing a semi-automated, data-
driven approach to understanding the
actions of the watchstander while
developing a cognitive model of that
performance.

In traditional top-down knowledge
engineering, the knowledge engineer
(KE) acquires an understanding of
the system by watching it in opera-
tion, interviewing subject matter
experts (SME), and doing some off-
line analysis of data generated by
the system. From these efforts, the
KE builds a description of how the
system operates, and from that
builds a computer model of its op-
eration. While this leads to a good
(depending on the gkill of the KE
and the complexity of the system)
understanding of the operation of
the system, it is a lengthy, time-
consuming, expensive, and error-
prone process. Validation, correc-
tion, and re-testing of the model
can also be a complex and lengthy
process, and in the worse case, pri-
marily due to the complexity of the
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system, it is an entirely intracta-
ble problem.

Data-driven knowledge engineering
(DDKE) is the process of using data
generated by a system to help in un-
derstanding the dynamics of that
system. At its heart is the ability
to generate semantic rules that are
descriptive of the system. While
these rules form the model of the
system, they also allow for the KE,
SME, behavorial scientist, and other
analysts to understand the operation
and dynamics of the system.

DDKE does not represent a total de-
parture from traditional, top-down
knowledge engineering. The signifi-
cant value of DDKE is in ‘“priming
the pump” of the knowledge engineer-
ing process, giving the KE and SME a
frame of reference and common repre-
sentation within which to understand
and model the system. In this way
DDKE is able to shorten the develop-
ment time of the initial system
model, and dramatically shorten the
time it takes to review, adjust, and
field the model.

THE SYSTEM

Central to the process of data-
driven knowledge engineering (DDKE)
is the system that generates digital
data to be used in the process. In
the case of VETT, this “system” con-
sists of the conning officer using
VETT to perform some task (UNREP,
pier work, harbor transit, etc.).
It is important that the system be



configured to capture as much digi-
tal data as possible to support the
DDKE process.

DATA GENERATION

The DDKE analysis that was conducted
was limited to the alongside phase
of the UNREP evolution. During the
alongside phase the conning officer
must keep his ship alongside a much
larger ship, on a steady course and
speed, at a pre-determined separa-
tion distance. Data was collected
from 19 conning officers who wused
the VETT testbed to conn (drive) a
simulated Navy cruiser alongside an
oiler.

DATA PREPARATION

Data preparation is a very important
part of the process, and certainly
the most time and effort-consuming.
Data preparation refers to the
preparation of the data generated by
the system for the zrule discovery
phase. Data preparation involves:

e Data cleansing - getting
rid of bad, corrupted, in-
complete, or out-of-date
data.

e Missing data - identifying

and obtaining all of the
columns of data that are
necessary. This may in-
volve re-configuring the
system to generate and cap-
ture additional data, de-
riving new data, etc.

e Data derivation - deriving
new columns of data from
existing columns. For ex-
ample, in the UNREP study
it was necessary to calcu-
late the average relative
motion over a 15-second pe-
riod of time, when the data
had originally Dbeen re-

corded at one-second inter-
vals.

e Merging data - moving data
from whatever native data
storage format it 1s in

(spreadsheet, relational
database, object-oriented
database, etc.) into a two-
dimensional (row/column)

data format.

RULE DISCOVERY (MODEL
GENERATION)

The rule discovery phase involves
setting up and running the rule dis-
covery tool. There are generally
two types of rule discovery, super-
vised and unsupervised. In unsuper-
vised rule discovery the goal is to
discover any existing relationships
within the data without any pre-
conceived ideas about what the ob-
jective function might be. In su-
pervised rule discovery the objec-
tive function (rule consequent (s))
is known. The input data fields are
selected because they are believed
to have a relationship to the objec-
tive functions, and supervised rule
discovery describes and quantifies
the relationship between the input
data fields and the consequent data
fields. For example, in the UNREP
study the objective functions are
conning officer course and speed
changes; these are the only two con-
trol actions the conning officer can
take. The input fields are the
length of the phone and distance
(T&D) line, the direction and speed
of relative motion, and the fore and
aft alignment of the receiving ves-
sel with the delivery vessel.

In human performance and training
applications we are generally inter-
ested in using supervised rule dis-
covery. This is because we usually
know what actions the human can
take, and we are trying to under-
stand under what combination of con-
ditions they take that action. To



set up the rule discovery process,
metrics associated with system per-
formance must first be identified.
These metrics are based on informa-
tion that is available and measur-
able, even in a qualitative way, by
the human operator. In the case of
the alongside phase of an UNREP evo-
lution, these metrics are associated
with the relative position and speed
of the two ships: range, alignment,
direction of relative motion (DRM),
and speed of relative motion (SRM).

The next step is to quantify, even

if only in qualitative terms, “good”
performance in terms of these met-
rics. For example, we know that

when perfectly on station we expect
the range between the two ships to
be 120 feet (220 feet 1f measured
between the center points of the two
ships) . We also know that this
range will vary somewhat, given the
dynamics between the two ships and
the actions of the wind and seas.
However, we expect the conning offi-
cer to be able to maintain a separa-
tion range close to the desired fig-
ure of 220 feet. We can qualify
this performance by assigning adjec-
tives to the performance metric:
“Correct” separation range, “Too-
Close”, and “TooFar”. Using the ex-
pectations of performance discussed
above, we can create fuzzy sets to
represent these adjectives, depicted
in Figure 1.
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Figure 1. Range Fuzzy Sets

The interpretation of these fuzzy
sets is as follows: The degree of
membership (DoM) within the concept
of being at the correct range is
1.00 (fully within the concept) when
the center of the two ships are 220
feet apart (exactly at the correct
separation range). As the range
moves away from 220 feet, in either
direction, the DoM within the con-
cept of being at the correct range
decreases. We have shown this de-
crease in DoM to be a linear func-
tion of decreasing/increasing range.

At a certain point, the range has
moved far enough away from the per-
fect separation range so that it can
no longer be considered to be cor-
rect to any degree. We have created
complimentary fuzzy sets, “TooClose”
(to the left of the “Correct” fuzzy
set) and “TooFar” that overlap the
Correct fuzzy set. As the range de-
creases, for example, the membership
in the concept of being TooClose to
the oiler increases as the concept
of Correct separation range de-
creases.

Similar to the range fuzzy sets, we
can construct fuzzy sets to repre-
sent the other semantic terms in the
problem, as depicted in Figure 2
through Figure 4.
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Figure 3. Direction of Rela-
tive Motion (DRM) Fuzzy Sets
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Figure 4. Speed of Relative
Motion (SRM) Fuzzy Sets

The specific tool used in the rule
discovery process was CubiCalc Rule

Maker. CubiCalc 1s a commercially
available fuzzy system modeling
tool. Rule Maker is a rule discov-

ery add-on to CubiCalc that supports
data mining and knowledge discovery.
Rule Maker uses an automated process
of fuzzy interpolation and correla-

tion analysis “..that automatically
creates a fuzzy rule base from user-
supplied data” (Hyperlogic, 1994,
p-1).

FUZZY DATA MINING AS KNOWLEDGE
DISCOVERY

The fuzzy rule base that is the out-
put of the rule discovery process is
a model of the system that generated
the data. This model consists of
fuzzy If-Then rules that represent
the discovered relationships between
the input (subjective) variables
(range, alignment, DRM, and SRM) and
the output (objective) variables
(the course and speed changes that
the conning officer makes). A fuzzy
rule discovery approach to data min-
ing, as described in this paper, is
truly a knowledge discovery process,
since the representation of the dis-
covered vrelationships within the
data consists of a semantic repre-
sentation of operator performance.

A very important consideration in
setting up the rule discovery proc-
ess 1s understanding the source of
the data and what the data repre-
sents. For example, in the UNREP
scenario, does the data represent
the performance of an experienced
conning officer, or does it repre-
sent a novice? Under what condi-
tions was the data generated (sea
state, visibility, etc.)? How vari-
able 1is the data? The generated
model is only representative of the
data analyzed.

In a fuzzy rule discovery process,
the If-Then statements that make up
the rule base consist of nouns and
their associated descriptive adjec-
tives. The number of rules in the
rule base is a subset of the fuzzy
associative matrix (FAM) that de-
fines the possible solution space of
the problem (Kosko, 1992).

The FAM consists of a permutation of
all of the possible input condi-
tions, each with an associated out-
put condition(s). The actual number
of rules in the discovered rule base
is determined by the evidence dis-
played by the training set of data:



if an input condition is discovered
in the training set, then the system
learns the associated output. This
rule (the relationship between the
input conditions and the consequent
condition(s)) 1is then strengthened,
modified, or weakened as the rule
discovery process gains experience
(i.e., processes more input condi-
tions) .

The following is a sample rule as it
appears in the model:

IF
TD RNG IS Correct AND
ALGNMNT IS OK AND
DRM IS Away AND
SRM IS Fast

THEN
ORD_CRSE IS Left 1 AND
ORD_SPD IS +2RPM

RULE REVIEW AND MODIFICATION

The specific value of a fuzzy logic
rule discovery process 1is that the
generated model consists of rules
that take the form of semantic
statements. These rules are readily
recognizable by the KE, SME, and be-
havorial scientist, and form the ba-
sis of a shared understanding of the
problem domain.

In rule review and modification, the
KE and SME review the rules, and
with a basic understanding of fuzzy
system processing, are able to ver-
ify the correctness of the rules.
If necessary, the SME and KE can
modify the rules. This is sometimes
necessary due to the nature of the
input data. For example, if the
data is inconsistent or contains
many errors, then the discovered
rules will be inconsistent. The
value of the DDKE process 1is that
the rule discovery process will put
the rule base (system model) “in the
ballpark”, and the SME and KE can
focus their energy and expertise on
understanding the modeled process

and adjusting it, rather than build-
ing it from scratch.

Another issue is missing evidence in
the data. Each record in the data
set represents evidence of some
causal relationship between the in-
put fuzzy sets and the objective
fuzzy sets. If there is no evidence
of a particular relationship in the
data set, then it will not be repre-
sented by the discovered rule set.
Knowledge of the structure of the
fuzzy associative memory (FAM) will
allow the KE to know where these in-
stances occur, and working with the
SME they can decide how to address
these occurrences.

One issue 1is whether or not missing
relationships will ever occur. If
not, then the model doesn’t require
that zrule to operate effectively.
If the relationship could possibly
occur, then the KE and SME should

provide the missing rule. The spe-
cific quantification of the rela-
tionship (i.e., the adjectives to

use in the fuzzy rule) can be deter-
mined through a combination of tra-
ditional knowledge engineering and
an analysis of nearby rules within
the FAM decision space.

SYSTEM MODEL

As discussed, the discovered rule
base represents a model of the sys-
tem that generated the data. This
model is based on the relationship
between independent and dependent
variables in the system, as selected
by the KE and SME. The model is the
function that connects the independ-
ent to the dependent variables

MODEL VALIDATION

The approach to validating the model
of conning officer performance was
to develop a validation environment
using MatLab®. MatLab has an ex-



tensive and powerful simulation ca-
pability that was used to model the
dynamics of the two ships. The Mat-
Lab Fuzzy Logic Toolbox was used to
implement the developed fuzzy model
(MathWorks, 1999).

In the wvalidation processing, the
receiving ship was randomly posi-
tioned within an allowable starting
area with a defined course and speed
(Casey, 2000). The fuzzy model
would control the motion of the re-
ceiving ship. The test was to see
if the fuzzy model could adjust re-
ceiving ship course and speed such
that the receiving ship maneuvers
into the correct alongside position
and stays there. In addition, the
fuzzy model was evaluated on its
ability to maintain the receiving
ship’s position alongside with mini-
mal course and speed corrections.

An artificiality of this approach is
the Dbehavior of the model as it
tries to maneuver the receiving ship
towards the oiler from a “distant”
position. As the receiving ship ma-
neuvers through the geographic
plane, in terms of the fuzzy model
it is moving through a multi-
dimensional (in this case, four-
dimensional) decision space. The
direction of relative motion (DRM)
and speed of relative motion (SRM)
change with changes in either course
or speed, and Range and Alignment
are affected by the relative change
in position Dbetween the receiving
ship and the oiler.

The effect of this artificiality is
that as the ship maneuvers from a
“distant” position to the correct
on-station position, the model im-
plements a number of course and
speed changes as it passes through
different regions of the decision
space. In reality, an experienced
conning officer would determine an
initial action to take, and would
make adjustments only as necessary.
This is not a limitation of the

model as much as it is an applica-
tion of the model for which it was
not intended: the model is designed
to make fine adjustments to posi-
tion, not control a ship through a
transit.

If the model were to be implemented
operationally or in a training ap-
plication, a front-end assessment
should be implemented to assess the
degree to which the current solution
(in this case, the receiving ship
course and speed) would achieve the
correct result, and weigh the output
of the model accordingly. One sim-
ple way would be to weight the out-
put of the model recommendation with
the inverse of a fuzzy “correct ac-
tion” determination. For example,
if the current solution is fully
(1.0) within the set of “correct ac-
tion”, then the weight applied to
any recommendation by the model
would be the inverse of the fuzzy
set “correct action” (in this case,
0.0). That way, the recommendation
from the model would essentially be
the null set.

The model was not expected to be
able to maintain the correct along-
side position perfectly. This 1is
also true in the case of a real con-
ning officer performing an UNREP.
However, position keeping for an
“expert” conning officer should be
kept within the following acceptable
tolerance values:

Variable Min Max
RANGE 200 240
RANGE Y -15 15
SRM 0 .25

“Minimal course and speed correc-
tions” is a little harder to define.
In reality, the conning officer will
use whatever number of course and
speed changes are necessary to main-
tain the correct position. However,
based on the VETT data, the subjects
changed course 1.44% of the time



during the alongside phase, and they
changed speed 1.73% of the time.

During the first running of the
Alongside model, the model was able
to maintain the receiving ship
alongside the oiler well within the
prescribed positional validation pa-
rameters. There was initially some
underdamped performance in the
model, which resulted in the ship
position oscillating back and forth.
In other words, while position keep-
ing was generally well within toler-
ance, the model generated an exces-
sive number of conning commands.

MODEL TUNING

Model tuning efforts were undertaken
in two areas. The first was to cor-
rect the underdamped performance of
the model. In general, the rules
that applied to the receiving ship
being nearly on station were ad-
justed to take less aggressive cor-
rective action. The second class of
tuning efforts focused on the de-
fuzzification method, and is dis-
cussed in more detail in the follow-
ing section.

DEFUZZIFICATION

In the processing of a fuzzy system
each rule contributes its “opinion"
as to the outcome of the system.
These opinions are combined into a
single opinion in a process known as
fuzzification, and this combined
opinion is defuzzified into a sin-
gle, discrete system output.

There are a number of different ways
to defuzzify fuzzy systems to gener-
ate model output. In general they
fall into two classes: continuous
and discrete defuzzification. In
continuous defuzzification, the
model outputs a precise wvalue that
can exist at any point along the en-
tire range of possible output val-

ues. In discrete defuzzification,
the model outputs one of a set of
discrete possible output values.

In control-related applications,
continuous defuzzification is gener-
ally preferred. However, the con-
ning officer is limited to a number
of specific conning command incre-
ments (i.e., two RPMs of speed, 0.5
degrees of course), which would seem
to argue for a discrete defuzzifica-
tion method. While the conning of-
ficer model could be considered a
control application, the nature of
the conning officer command limita-
tions calls for a discrete rule out-
put. During the wvalidation process
a number of discrete defuzzification
methods were tested. In addition,
associating continuous defuzzifica-
tion with a rounding method to match
up the fuzzy model output with the
appropriate conning officer command
was evaluated.

The following conclusions can be
drawn from the successful wvalidation
of the Alongside model:

- The process of DDKE can pro-
vide a deep understanding of
what a subject does by evalu-
ating the data associated with
subjects performing that task.

- DDKE is a relatively quick and
efficient way of developing
expert models of human per-
formance.

- It 1is believed that, based on
this successful demonstration,
that the process of DDKE can
be extended to other shiphan-
dling tasks, and 1likely to
other problem domains en-
tirely.

MODEL USAGE 1IN INTELLIGENT
TUTORING

One of the areas in which the fuzzy
expert technology that underlies the



DDKE approach may be of great value
is in its ability to evaluate stu-
dent performance. It is hypothe-
sized that the expertise resident in
a fuzzy model (such as that gener-
ated by the DDKE approach) can be
used to effectively measure student
performance. For example, a student
could be evaluated with regards to
how accurately they followed some
recommended action (turned in the
right direction, turned the recom-
mended amount) or how timely they
responded (turned early, turned
late, turned on time). While the
direction of turn may be a binary
value, the other parameters all in-
corporate a degree of fuzzy member-
ship.

The Alongside model represents the
control actions taken by an experi-
enced conning officer to maintain a
fine position alongside an oiler
during an UNREP evolution. This
representation is achieved through a
fuzzy rule base that consists of se-
mantic rules that process in paral-
lel to achieve the combined result
of expert performance. During this
processing it is possible (depending
on the specific fuzzy inference en-
gine used) to track the individual
contribution (rule firing) of each
rule. Of course, the current state
of the simulation (i.e., the loca-
tion and relative motion of the two
ships) 1s also known at any given
time. Therefore, the model can be
implemented so that we know what the
model would do, and essentially why
it would do it.

Implemented within a simulation-
based training system, model per-
formance could be compared against
student performance to form the ba-
sis of an understanding and assess-
ment of what the student is doing.
The model knows exactly what the
student should be doing and the com-
ponent conditions that exist at that
given instant (i.e., the reasons the
student should be performing that

action). The training system could
compare student action (or inaction)
to the model recommendation and
measure the degree to which the stu-
dent’s performance matches that of
the model. For example, a close
match might result in a positive re-
inforcement comment from an auto-
mated "mentor" function. An action
that is constructive but not perfect
might receive a recommendation for a
better, more appropriate action.
Finally, an action that is decidedly
wrong might receive prompt instruc-
tion on the correct action to take.

CONCLUSION

The fuzzy logic rule generation ap-
proach to knowledge engineering
promises to reduce the time and cost
of the traditional knowledge engi-
neering process, while allowing the
knowledge engineer to retain control
of the modeling process. The prin-
ciple wvalue in wusing fuzzy logic
rule discovery for analyzing system
data is its ability to generate se-
mantic rules that are descriptive of
the underlying process. Neural
nets, while widely used in automated
learning and system modeling appli-
cations, can not provide the same
kind of descriptive and traceable
output that a fuzzy rule discovery
process can. In addition, they do
not allow for the knowledge engineer
to modify the generated model. The
ability to review the generated
model and edit it as necessary is
often desirable, due to the diffi-
culty in acquiring truly representa-
tive training data sets. Finally,
this ability to trace system proc-
essing allows for its use in under-
standing and quantifying student
performance and being the driver for
remediation strategies in an intel-
ligent tutoring application.
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